There’s gold in them there hills. You know, those ones floating around in space. Asteroids contain many tons of precious metals, making them irresistible to scientists, aerospace engineers, futurists, fiction writers … and tech billionaires. A group of wealthy, adventurous entrepreneurs will announce on Apr. 24 a new venture called Planetary Resources, Inc., which plans to send swarms of robots to space to scout asteroids for precious metals and set up mines to bring resources back to Earth, in the process adding trillions of dollars to the global GDP, helping ensure humanity’s prosperity and paving the way for the human settlement of space.
“The resources of Earth pale in comparison to the wealth of the solar system,” said Eric Anderson, who founded the commercial space tourism company Space Adventures, and is co-founder of a new company along with Peter Diamandis, who started the X Prize foundation, which offers prize-based incentives for advanced technology development. Nearly 9,000 asteroids larger than 150 feet in diameter orbit near the Earth. Some could contain as much platinum as is mined in an entire year on Earth, making them potentially worth several billion dollars each. The right kinds of investment could reap huge rewards for those willing to take the risk. Outside of NASA, Anderson and Diamandis are among the most likely candidates to realize such a dream. Space Adventures has sent seven private tourists to the International Space Station while the Ansari X Prize led to a spurt of non-governmental manned spaceships.
“We have a long track record of making large-scale space ventures real,” said Diamandis. Despite the promise of astronomical profits, the long time-scales and uncertain return on asteroid mining has historically driven most investors away from such undertakings. But the new company is also backed by a number of other billionaire luminaries, including Google’s CEO Larry Page and executive chairman Eric Schmidt, former Microsoft chief architect Charles Simonyi, and Ross Perot Jr. The venture also counts on filmmaker James Cameron, former astronaut Tom Jones, former JPL engineer Chris Lewicki, and planetary scientist Sara Seager as advisers.
Still, this new undertaking will be much larger and more ambitious than anything Anderson and Diamandis have attempted before. The hurdles are many and high. While the endeavor is technically feasible, the technology has not yet been developed. And beyond their initial steps, the details of Planetary Resources’ plans remain scarce. The first hurdle will likely be ensuring that Planetary Resources has covered all its legal bases. While some have argued that governments need to set up specific property rights before investors will make use of space, the majority of space lawyers agree that this isn’t necessary to assure the opportunity for a return on investment, said space policy analyst Henry Hertzfeld at George Washington University in Washington D.C. Mining occurs in international seabeds — even without specific property rights — overseen by a special commission dedicated to the task, he said.
A similar arrangement would likely work in space. In terms of extraction, Planetary Resources hopes to go after the platinum-group metals — which include platinum, palladium, osmium, and iridium — highly valuable commodities used in medical devices, renewable energy products, catalytic converters, and potentially in automotive fuel cells. Platinum alone is worth around $23,000 a pound — nearly the same as gold. Mining the top few feet of a single modestly sized, half-mile-diameter asteroid could yield around 130 tons of platinum, worth roughly $6 billion.
Within the next 18 to 24 months, Planetary Resources hopes to launch between two and five space-based telescopes at an estimated cost of a few million dollars each that will identify potentially valuable asteroids. Other than their size and orbit, little detailed information is available about the current catalog of near-Earth asteroids. Planetary Resources’ Arkyd-101 Space Telescopes will figure out whether any are worth the trouble of resource extraction. Within five to seven years, the company hopes to send out a small swarm of similar spacecraft for a more detailed prospecting mission, mapping out a valuable asteroid in detail and identifying rich resource veins.
They estimate such a mission will cost between $25 and 30 million. The next step — using robots to remotely mine, possibly refine ore, and return material to Earth safely — is probably the toughest phase, and Planetary Resources is still tight-lipped about its plans here.
Source